Review: Sequences, Sets and Derivatives

Introductory Mathematical Economics

David Ihekereleome Okorie December 26th 2019

> ・ロト < 団ト < 置ト < 置ト 差 少へ(WISE,SOE.& G.Chow Institute, Xiamen University (XMU)

David Ihekereleome Okorie

00 000 0000 000 000 000 00 000000 000 0		Sequences and Sets	Direct Derivatives	Partial Derivatives	Total Derivatives
	00 00	000 0000000 000	0000 000		

- 1 Introduction
 - Self Introduction
 - Session Materials & Rules

2 Sequences and Sets

- Sequences
- Sets
 - Open and Closed Sets
 - Bounded Set
- Existence of Optimal Solution

3 Direct Derivatives

- Differentiability and Continuity
- Basic Rules

4 Partial Derivatives Partial Differentiation

← ロ ▶ < 団 ▶ < Ξ ▶ < Ξ ▶ < Ξ ▶ Ξ → ○ < ○
 WISE,SOE.& G.Chow Institute, Xiamen University (XMU)

Introductory Mathematical Economics

00 000 000 00 000 000 00 000000 000	Introduction	Sequences and Sets	Direct Derivatives	Partial Derivatives	Total Derivatives
000	00 00	000 0000000 000	0000 000		

- 1 Introduction
 - Self Introduction
 - Session Materials & Rules

2 Sequences and Sets

- Sequences
- Sets
 - Open and Closed Sets
 - Bounded Set
- Existence of Optimal Solution

3 Direct Derivatives

- Differentiability and Continuity
- Basic Rules

4 Partial Derivatives Partial Differentiation

(□) < (⊡) < (⊡) < (⊡) < (⊡) < (⊡) </p>
WISE,SOE.& G.Chow Institute, Xiamen University (XMU)

David Ihekereleome Okorie

Introduction	Sequences and Sets	Direct Derivatives	Partial Derivatives	Total Derivatives
• o oo	000 0000000 000	0000 000		
Self Introduction				

1 Introduction Self Introduction

Session Materials & Rules

2 Sequences and Set

- Sequences
- Sets
 - Open and Closed Sets
 - Bounded Set
- Existence of Optimal Solution

3 Direct Derivatives

- Differentiability and Continuity
- Basic Rules

4 Partial Derivatives Partial Differentiation

David Ihekereleome Okorie

Introduction	Sequences and Sets	Direct Derivatives	Partial Derivatives	Total Derivatives
00 00	000 0000000 000	0000 000		
Self Introduction				

Research Interests

- Financial Econometrics
- Energy Finance
- Game Theory

Office Hour

Every Tuesday, Time: 6:00pm - 7:00pm. Room: Nangying 109

You can also send me an email: okorie.davidiheke@gmail.com

A (10) > A (10) > A (10)

Introduction	Sequences and Sets	Direct Derivatives	Partial Derivatives	Total Derivatives
•0	0000000 000	000		
Session Materials & Rules				

Self Introduction Session Materials & Rules Sequences Sets Open and Closed Sets Existence of Optimal Solution Differentiability and Continuity Basic Rules Partial Differentiation

Introduction

<ロ> <四> <四> <日> <日> <日</p> WISE, SOE. & G. Chow Institute, Xiamen University (XMU)

э

Introductory Mathematical Economics

Introduction	Sequences and Sets	Direct Derivatives	Partial Derivatives	Total Derivatives
00	0000000 000	000		
Session Materials & Rules				

Session Materials

At least, a day before our session, the updated slides would be available at my website. Navigate to Teaching Materials page to download the slides.

Session Rules

You must:

- not use your phone(s) during the classes.
- ask any question(s) bothering you about the on-going topic.

	Sequences and Sets	Direct Derivatives	Partial Derivatives	Total Derivatives
00 00	000 0000000 000	0000 000		

- Introduction
 - Self Introduction
 - Session Materials & Rules

2 Sequences and Sets

- Sequences
- Sets
 - Open and Closed Sets
 - Bounded Set
- Existence of Optimal Solution

3 Direct Derivatives

- Differentiability and Continuity
- Basic Rules

4 Partial Derivatives Partial Differentiation

(□) < (⊡) < (⊡) < (⊡) < (⊡) < (⊡) </p>
WISE,SOE.& G.Chow Institute, Xiamen University (XMU)

Introductory Mathematical Economics

Introduction 00 00	Sequences and Sets ● OO ○ OO OO OO ○ OO	Direct Derivatives 0000 000	Partial Derivatives 00	Total Derivatives 000
Sequences				

Introduction

Self Introduction

Session Materials & Rules

2 Sequences and Sets

Sequences

Sets

- Open and Closed Sets
- Bounded Set
- Existence of Optimal Solution

3 Direct Derivatives

- Differentiability and Continuity
- Basic Rules

4 Partial Derivatives Partial Differentiation

Introductory Mathematical Economics

Introduction 00 00	Sequences and Sets ○●○ ○○○○○○○ ○○○	Direct Derivatives 0000 000	Partial Derivatives 00	Total Derivatives 000
Sequences				

Remark:

What is/are the difference(s) between Sets and Sequences?

A sequence in \mathbb{R}^n is an **infinite** set of points x_k where $x_k \in \mathbb{R}^n$ for each integer $k = \{1, 2, 3, 4, ...\}$

Examples in \mathbb{R}^1

•
$$x_k = 1 - \frac{1}{k}$$
 for $k = 1, 2, 3, ...$

• what of
$$\mathbb{R}^2$$
, \mathbb{R}^3 , e.t.c. ?

◆ロト・合か・< 置き、< 置き、 置きの (WISE,SOE.& G.Chow Institute, Xiamen University (XMU)

David Ihekereleome Okorie

Introduction 00 00	Sequences and Sets 00● 0000000	Direct Derivatives 0000 000	Partial Derivatives 00	Total Derivatives
	000			

Remarks:

- 1. A sequence converges to a limit. That is to say $d(x_k, x) \to 0$
- as $k \to \infty$. The limit here is? i.e. $\lim_{k\to\infty} x_k = ?$
- 2. A sequence is monotone increasing if $x_{k+1} \ge x_k$ and monotone decreasing if $x_{k+1} \le x_k$
- 3. A sequence/set is bounded by a and b if \exists a, b $\epsilon \mathbb{R}$ such that $a \leq x_k \leq b \forall k$.
- 4. Every monotone and bounded sequence converges.

Introduction 00 00	Sequences and Sets 000 0000000 000	Direct Derivatives 0000 000	Partial Derivatives 00	Total Derivatives 000
Sets				

- - Self Introduction
 - Session Materials & Rules

2 Sequences and Sets

- Sequences
- Sets
 - Open and Closed Sets
- Existence of Optimal Solution

- Differentiability and Continuity
- Basic Rules

Partial Differentiation

<ロ> <四> <四> <日> <日> <日</p> WISE, SOE. & G. Chow Institute, Xiamen University (XMU)

э

David Ihekereleome Okorie

Introduction 00 00	Sequences and Sets ○○○ ○●○○○○○	Direct Derivatives 0000 000	Partial Derivatives 00	Total Derivatives 000
Sets				

- Introduction
 - Self Introduction
 - Session Materials & Rules

2 Sequences and Sets

- Sequences
- Sets
 - Open and Closed Sets
 - Bounded Set
- Existence of Optimal Solution

3 Direct Derivatives

- Differentiability and Continuity
- Basic Rules

4 Partial Derivatives Partial Differentiation

Introductory Mathematical Economics

	Sequences and Sets	Direct Derivatives	Partial Derivatives	Total Derivatives
0	000 000000 000	0000 000		

An open ball or neighbourhood with centre x and radius r is defined as $B(x,r) = \{y \in \mathbb{R}^n | d(x,y) < r\}.$

Open and closed sets

Sets

1. A set $S \subseteq \mathbb{R}^n$ is open iff $\forall x \in S, \exists any radius, r > 0$, such that $B(x,r) \in S$. Hence, for each $x \in S$, there is an open ball around x that is contained entirely in S 2. A set $S \subseteq \mathbb{R}^n$ is closed iff $\forall x \in S, x_k \to x$ and $x \in S$. Hence, a closed set contains its limit points.

Egs. Sketch the first two:
1.
$$\{(x_1, x_2) \in \mathbb{R}^2 | a_1 < x_1 < a_2, a_3 < x_2 < a_4\}$$

2. $\{(A, B) \in \mathbb{R}^2 | 0 \le A \le 7, -3 \le B \le 5\}$
3. Which is open and which is closed?
4. is [2,8] open or closed ?

Introduction 00 00	Sequences and Sets ○○○ ○○○●○○○	Direct Derivatives 0000 000	Partial Derivatives 00	Total Derivatives 000
Sets				

- Self Introduction

 - Session Materials & Rules

2 Sequences and Sets

- Sequences
- Sets
 - Open and Closed Sets

Bounded Set

- Existence of Optimal Solution
- - Differentiability and Continuity
 - Basic Rules

Partial Differentiation

<ロ> <四> <四> <日> <日> <日</p> WISE, SOE. & G. Chow Institute, Xiamen University (XMU)

э

David Ihekereleome Okorie

Introduction 00 00	Sequences and Sets	Direct Derivatives 0000 000	Partial Derivatives 00	Total Derivatives 000
Sets				

Bounded Set

A set $S \subset \mathbb{R}^n$ is bounded if $\exists 0 < r < \infty$ (i.e. r is finite/defined) such that $S \subset B(0,r)$ is defined/exist. Hence, the ball completely contains S for any finite radius otherwise, it's an unbounded set.

Eqs. Find the radius, r, that makes the following bounded sets 1. S = [0, 2]2. S = [2, 5]3. S = [-2, 2]4. $S = \{0, 10, 20, ...\}$

> ◆ロト・合か・< 置き、< 置き、 置きの (WISE,SOE.& G.Chow Institute, Xiamen University (XMU)

David Ihekereleome Okorie

	Sequences and Sets	Direct Derivatives	Partial Derivatives	Total Derivatives
00	000 00000●0 000	0000 000		

Upper Bound

Given $A \subset \mathbb{R}$, $u \subset \mathbb{R}$ is an upper bound of A if $u \ge a \forall A$. U(A) is the set for all upper bonds of A.

Lower Bound

Given $A \subset \mathbb{R}$, $l \subset \mathbb{R}$ is a lower bound of A if $l \leq a \forall A$. L(A) is the set for all lower bonds of A.

Supremum

This is the least upper bound. $\sup(A) \leq u \forall u \in U(A)$. $\sup(A)$ is unique. $\sup(A)$ can be ∞ (not well defined) if A is not bounded above

Infimum

This is the highest lower bound. $\inf(A) \ge l \forall l \in L(A)$. $\sup(A)$ is unique. $\sup(A)$ can be $-\infty$ (not well defined) if A is not bounded above

David Ihekereleome Okorie

WISE, SOE. & G. Chow Institute, Xiamen University (XMU)

Introduction 00 00	Sequences and Sets 000 000000● 000	Direct Derivatives 0000 000	Partial Derivatives 00	Total Derivatives 000
Sets				

Remarks

- A closed or open set is only but a necessary (and not sufficient) condition for a Bounded set and vice versa.
- Hence, not all closed sets are bounded. E.g. \mathbb{Z} , \mathbb{R} , $[-2, \infty)$, $(-\infty, 9]$, $(-\infty, \infty)$ e.t.c. are closed but unbounded.
- A set is closed (open) if its compliment is open (closed). An empty set is an open set.
- Conversely, not all bounded sets are closed. E.g. (-3,6), (2,19), e.t.c.
- However, economists are very happy when a set is closed and bounded. Why?

	Sequences and Sets	Direct Derivatives	Partial Derivatives	Total Derivatives
	000000 000			
Existence of Optimal Solution				

- Introduction
 - Self Introduction
 - Session Materials & Rules

2 Sequences and Sets

- Sequences
- Sets
 - Open and Closed Sets
 - Bounded Set
- Existence of Optimal Solution
- 3 Direct Derivatives
 - Differentiability and Continuity
 - Basic Rules

4 Partial Derivatives Partial Differentiation

Introductory Mathematical Economics

	Sequences and Sets	Direct Derivatives	Partial Derivatives	Total Derivatives
	0000000			
	000			
Existence of Optir	mal Solution			

Compact Set

A set $S \subset \mathbb{R}^n$ is compact if every sequence in S contains a convergent subsequence. That is, set $S \subset \mathbb{R}^n$ is compact iff it is closed and bounded.

Weierstrass Theorem:

Let $D \subset \mathbb{R}$ be **compact** and let $f : D \to \mathbb{R}$ be a **continuous function** on D, then \exists points z_1 and z_2 in D such that $f(z_1) \ge f(z) \ge f(z_2)$, $z \in D$. Hence, f attains a maximum and a minimum. What are the maximum and minimum points?

David Ihekereleome Okorie

	Sequences and Sets	Direct Derivatives	Partial Derivatives	Total Derivatives	
00	000	0000			
	000				
Existence of Optimal Solution					

Examples:

Determine the Max, Min, Infimum & Supremum of the following: 1).

$$D = (-1, 1), f(x) = x^2$$

2).

$$D = [0, 1], f(x) = \begin{cases} x, & \text{if } x = \frac{1}{n}, n = 1, 2, 3, ..., \\ 1, & \text{otherwise} \end{cases}$$

3).

$$D = \mathbb{R}, f(x) = -|x|$$

4).

$$D = \mathbb{R}, f(x) = |x|$$

5). What **assumptions** do we need to guarantee that a solution exists?

$$\max_{C} U(C)$$

	Sequences and Sets	Direct Derivatives	Partial Derivatives	Total Derivatives
00 00	000 0000000 000	0000 000		

- Introduction
 - Self Introduction
 - Session Materials & Rules

2 Sequences and Sets

- Sequences
- Sets
 - Open and Closed Sets
 - Bounded Set
- Existence of Optimal Solution

3 Direct Derivatives

- Differentiability and Continuity
- Basic Rules

4 Partial Derivatives Partial Differentiation

Introductory Mathematical Economics

	Sequences and Sets	Direct Derivatives	Partial Derivatives	Total Derivatives	
		0000			
	0000000 000				
Differentiability and Continuity					

- Introduction
- Self Introduction
- Session Materials & Rules

2 Sequences and Sets

- Sequences
- Sets
 - Open and Closed Sets
 - Bounded Set
- Existence of Optimal Solution

Basic Rules

4 Partial Derivatives Partial Differentiation

Introductory Mathematical Economics

	Sequences and Sets	Direct Derivatives	Partial Derivatives	Total Derivatives
		0000		
	0000000 000			
Differentiability and Continuity				

Domain and Range

Domain of f is the set of numbers, x, at which f(x) is defined. What is Range?

Differentiability

A differentiable function f is differentiable at every point x_0 in its domain, D. i.e. the curve of f is smooth.

Continuity

A continuous function, f, for any sequence $\{x_n\}$ which converges to x_0 in the domain, D; $f(x_n)$ converges to $f(x_0)$. i.e. there are no breaks in the graph.

	Sequences and Sets	Direct Derivatives	Partial Derivatives	Total Derivatives
00	000 0000000 000	0000 000		
Differentiability a	nd Continuity			

Continuously Differentiable function (C^1)

A function f is continuously differentiable if f'(x) is continuous.

Twice Continuously Differentiable function (C^2)

A function f is twice continuously differentiable if f''(x) is continuous.

Derivative

$$f'(x) = \frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Second Derivative

$$f''(x) = \frac{d^2 f(x)}{dx^2} = \lim_{h \to 0} \frac{f'(x+h) - f'(x)}{h}$$

David Ihekereleome Okorie

WISE, SOE. & G. Chow Institute, Xiamen University (XMU)

	Sequences and Sets	Direct Derivatives	Partial Derivatives	Total Derivatives
00 00	0000000	0000 000		
	000			

Differentiability and Continuity

Given a convex set \mathbf{D} , $\forall \mathbf{x}, \mathbf{x}_0 \in \mathbf{D}$ and f is concave/convex then,

$$f(\mathbf{x}) = f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0)$$

Figure 1: Derivatives and Approximations

Examples

•
$$f(x) = \sqrt{x}$$
, evaluate $f(101)$ given that $\theta = 2.86$

• $f(z) = z^4$, find f(9.9)

David Ihekereleome Okorie

WISE, SOE. & G. Chow Institute, Xiamen University (XMU)

	Sequences and Sets	Direct Derivatives	Partial Derivatives	Total Derivatives
00 00	000 0000000 000	0000 •00		
Basic Rules				

Introduction

Self Introduction

Session Materials & Rules

2 Sequences and Se

- Sequences
- Sets
 - Open and Closed Sets
 - Bounded Set
- Existence of Optimal Solution

3 Direct Derivatives

Differentiability and Continuity

Basic Rules

4 Partial Derivatives Partial Differentiation

Introductory Mathematical Economics

	Sequences and Sets	Direct Derivatives	Partial Derivatives	Total Derivatives
00 00	000 0000000 000	0000 0●0		
Basic Rules				

Some Rules of Differentiation

First Principle approach

$$D(x^k) = d(x^k) = (x^k)\prime = kx^{k-1},$$
 called Power Rule

•
$$D(\alpha) = 0$$
 when $\alpha \in \mathbb{R}$ why?

•
$$(f \pm g)\prime(x) = f\prime(x) \pm g\prime(x)$$
, called Sum & Difference Rule

(
$$f \bullet g$$
) $\prime(x) = f\prime(x)g(x) + f(x)g\prime(x)$, called Product Rule

•
$$(\frac{f}{g})'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$
, called Quotient Rule

•
$$Df(g(x)) = f'(g(x))g'(x)$$
, called Chain Rule

•
$$D(log_a x) = \frac{1}{xlna}$$
, called Logarithmic Rule

•
$$Df(y,x)$$
 and $y = f(x) \rightarrow \frac{-Df_x(y,x)}{Df_y(y,x)}$, called Implicit Rule

Introduction 00 00	Sequences and Sets 000 0000000 000	Direct Derivatives ○○○○ ○○●	Partial Derivatives 00	Total Derivatives 000
Basic Rules				

Examples

•
$$f(w) = 7w^4 - 8w^2 + 9w$$
 find $f'(w), f'(1), f''(w) \& f''(w = 2)$

•
$$f(x) = (1 - x^3)^5$$
, find f'

•
$$k = \left(\frac{x-1}{x+3}\right)^{\frac{1}{3}}$$
 find $\frac{dk}{dx}$

•
$$y = (x - 3)(x^2 + 8)^3$$
 find y'

•
$$V = (mp^k)(r-p)$$
 find V_p

•
$$Y = Ak^{\alpha}l^{\beta}$$
 find Y_k, Y_l, Y_{kl}

David Ihekereleome Okorie

<ロ> (四) (四) (日) (日) (日) WISE, SOE. & G.Chow Institute, Xiamen University (XMU)

2

	Sequences and Sets	Direct Derivatives	Partial Derivatives	Total Derivatives
00 00	000 0000000 000	0000 000		

- Introduction
 - Self Introduction
 - Session Materials & Rules

2 Sequences and Sets

- Sequences
- Sets
 - Open and Closed Sets
 - Bounded Set
- Existence of Optimal Solution

3 Direct Derivatives

- Differentiability and Continuity
- Basic Rules

4 Partial Derivatives Partial Differentiation

(□) < (⊡) < (⊡) < (⊡) < (⊡) < (⊡) </p>
WISE,SOE.& G.Chow Institute, Xiamen University (XMU)

David Ihekereleome Okorie

Introduction 00 00	Sequences and Sets 000 0000000 000	Direct Derivatives 0000 000	Partial Derivatives ●0	Total Derivatives 000
Partial Differentiation				

- Introduction
 - Self Introduction
 - Session Materials & Rules

2 Sequences and Sets

- Sequences
- Sets
 - Open and Closed Sets
 - Bounded Set
- Existence of Optimal Solution

3 Direct Derivatives

- Differentiability and Continuity
- Basic Rules

4 Partial Derivatives Partial Differentiation

David Ihekereleome Okorie

	Sequences and Sets	Direct Derivatives	Partial Derivatives	Total Derivatives
00 00	000 0000000 000	0000 000	0.	
Partial Differentiation	on.			

Consider $f(\mathbf{x}) = f(x_1, x_2, ..., x_k, ..., x_n)$ where x_i can vary without affecting others. i.e. x_i changes by Δx_i while other x's remain unchanged, y will change by Δy .

Definition

$$\frac{\delta f}{\delta x_k} = \lim_{h \to 0} \frac{f(x_1, x_2, \dots, x_k + h, \dots, x_n) - f(x_1, x_2, \dots, x_k, \dots, x_n)}{h}$$

Examples

•
$$f(x,y) = 8xy - x^3y + xy^5$$
 find f_1, f_2, f_{21} , and $f_1(2,4)$

•
$$g(k,m) = 75k^4$$
 find f_1 and f_m

•
$$g(s+q) = \alpha(s+q)^{\beta} - ms^{1-\alpha} + pq^{r+1}$$
, find $g\prime$, g_s and g_q

• What did you observe?

David Ihekereleome Okorie

WISE, SOE. & G. Chow Institute, Xiamen University (XMU)

00 000 0000 00 000 000 000 000		Sequences and Sets	Direct Derivatives	Partial Derivatives	Total Derivatives
	00 00	000 0000000 000	0000 000		

- Introduction
 - Self Introduction
 - Session Materials & Rules

2 Sequences and Sets

- Sequences
- Sets
 - Open and Closed Sets
 - Bounded Set
- Existence of Optimal Solution

3 Direct Derivatives

- Differentiability and Continuity
- Basic Rules

4 Partial Derivatives Partial Differentiation

(□) < (⊡) < (⊡) < (⊡) < (⊡) < (⊡) </p>
WISE,SOE.& G.Chow Institute, Xiamen University (XMU)

Introductory Mathematical Economics

Introduction 00 00	Sequences and Sets 000 0000000 000	Direct Derivatives 0000 000	Partial Derivatives 00	Total Derivatives ●00
Total Differentiation				

- Introduction
 - Self Introduction
 - Session Materials & Rules

2 Sequences and Sets

- Sequences
- Sets
 - Open and Closed Sets
 - Bounded Set
- Existence of Optimal Solution

3 Direct Derivatives

- Differentiability and Continuity
- Basic Rules

4 Partial Derivatives Partial Differentiation

Introductory Mathematical Economics

Introduction 00 00	Sequences and Sets 000 0000000 000	Direct Derivatives 0000 000	Partial Derivatives 00	Total Derivatives ○●○
Total Differentiation				

Consider $f(\mathbf{x}) = f(x_1, x_2, ..., x_k, ..., x_n)$ where all x_i change simultaneously . i.e. all x_i change by Δx_i , y will change by Δy , total change (dy).

Definition

$$\frac{df}{d\mathbf{x}} = \lim_{\Delta \to 0} \frac{f(x_i + \Delta) - f(x_i)}{\Delta} =$$

$$\lim_{\Delta \to 0} \frac{f(x_1 + \Delta x_1, x_2 + \Delta x_2, ..., x_k + \Delta x_k, ..., x_n + \Delta x_n) - f(x_1, x_2, ..., x_k, ..., x_n)}{\Delta}$$

where Δ is a vector.

Therefore

$$dF = \frac{\delta F}{\delta x_1} dx_1 + \frac{\delta F}{\delta x_2} dx_2 + \frac{\delta F}{\delta x_k} dx_k + \dots + \frac{\delta F}{\delta x_n} dx_n$$

How can we derive partial derivatives from total derivatives?

David Ihekereleome Okorie

WISE, SOE. & G. Chow Institute, Xiamen University (XMU)

	Sequences and Sets	Direct Derivatives	Partial Derivatives	Total Derivatives
				000
	0000000 000	000		
Total Differentiation				

Q&A Session

<ロ> <同> <同> < 回> < 回> WISE, SOE & G. Chow Institute, Xiamen University (XMU)

3

David Ihekereleome Okorie