Inverse and Implicit Functions

Introductory Mathematical Economics

David Ihekereleome Okorie
October 31st 2019

Outline

Second Order ET Revisited Examples
Inverse Function Theorem
Definition

Implicit Theorem
Definition

Outline

Second Order ET Revisited Examples

Inverse Function Theorem Definition

Implicit Theorem
Definition

Outline

Second Order ET Revisited

 ExamplesInverse Function Theorem Definition

Implicit Theorem Definition

Recall

It shows that

$$
V_{\theta \theta}(\theta) \geq F_{\theta \theta}(x, \theta)
$$

That is,

$$
\begin{gathered}
V_{\theta \theta}(\theta)=F_{\theta \theta}(x, \theta)+F_{x \theta}(x, \theta) X_{\theta} \\
\text { Then, } F_{x \theta}(x, \theta) X_{\theta} \geq 0 . \\
\text { Implying } \operatorname{sign}\left(F_{x \theta}(x, \theta)\right)=\operatorname{sign}\left(X_{\theta}\right)
\end{gathered}
$$

Interest

At this point,our interest gears towards establishing the effect of the model parameters (θ) on the optimal solution $X^{\star}(\theta)$. Most times, the objective functions are not explicitly defined, then we have to leverage on the fact that $\operatorname{sign}\left(F_{x \theta}(x, \theta)\right)=\operatorname{sign}\left(X_{\theta}\right)$ from $F_{x \theta}(x, \theta) X_{\theta} \geq 0$.

Show the direction of each parameter impact on the choice variable(s).

Eg. 1

$$
\begin{gathered}
\underset{x>0}{\arg \max } p x^{\frac{1}{2}}-w x \\
f_{x}=\frac{1}{2} p x^{\frac{-1}{2}}-w, f_{x p}=\frac{1}{2 \sqrt{x}}, \text { and } f_{x w}=-1
\end{gathered}
$$

Therefore, $\frac{\delta x}{\delta w}<0$ and $\frac{\delta x}{\delta p}</>0$

Eg. 2

$$
\begin{gathered}
\underset{x>0, y>0}{\arg \max } U(x, y) \text { s.t. } p_{x} x+p_{y} y \leq I \\
\mathrm{E}_{x}=U_{x}(x, y)-\lambda P_{x}, \mathrm{Ł}_{y}=U_{y}(x, y)-\lambda P_{y}, \mathrm{Ł}_{x p_{x}}=\mathrm{Ł}_{y p_{y}}=-\lambda
\end{gathered}
$$

Therefore, $\frac{\delta i}{\delta p_{i}}<0$ otherwise, 0 . where $i=\{x, y\}$

Eg.3: Pollution Control

x_{i} : Pollution abatement of firm i. $A=\sum_{i=1}^{n} x_{i}$: Total abatements of all firms. $c\left(x_{i}, \theta_{i}\right)$: Abatement cost of firm i. θ_{i} : Abatement cost parameter. $B(A)$: Social benefit of abatement.

$$
f_{x}=B_{A}\left(\sum_{i=1}^{n} x_{i}\right)-c_{x}\left(x_{i}, \theta_{i}\right) \text { and } f_{x \theta}=-C_{x \theta}\left(x_{i}, \theta_{i}\right)
$$

Therefore, $\frac{\delta x}{\delta \theta}<0$

Eg. 4

$$
\underset{x_{1}, x_{2} \geq 0}{\arg \max }-\theta_{1} x_{1}-\theta_{2} x_{2}
$$

$$
f_{x_{i}}=-\theta_{i} \text { and } f_{x_{i} \theta_{i}}=-1, \text { otherwise } 0 . \text { Where } i=\{x, y\}
$$

Therefore $\frac{\delta x_{i}}{\delta \theta_{i}}<0$ otherwise, 0 .

Remarks:

Considering examples $2 \& 4$, we could not establish cross effects directly. We therefore need to formally apply the implicit or inverse function theorem to establish both direct and cross (indirect) effects of the model's parameters on the choice variable(s).
These approaches are used when one variable is a function of another, whether or not the functional form or relationship is explicitly defined.

Outline

Second Order ET Revisited Examples

Inverse Function Theorem

Definition

Implicit Theorem
Definition

Outline

Second Order ET Revisited Examples

Inverse Function Theorem
Definition

Implicit Theorem
Definition

For $g: X \rightarrow \theta$ to be invertible, g must be a one-to-one correspondence (bijection) (i.e. both one-to-one (injective) and onto (surjective) function).
\forall one-to-one, $f\left(x_{1}\right)=f\left(x_{2}\right)$ iff $x_{1}=x_{2}$ but for onto function $f\left(x_{1}\right)=f\left(x_{2}\right)$ doesn't necessarily mean that $x_{1}=x_{2}$.

Remarks:

1. A matrix $A=\left\{a_{i, j}\right\}_{n \times m}$ is invertible if $|A| \neq 0$
2. Injective but not surjective functions has no defined $f^{(-1)}$
3. Surjective but not injective functions has no well-defined $f^{(-1)}$
4. Bijection (Injective and surjective) functions has well-defined $f^{(-1)}$

For an invertible function $\theta=g(x)$, with inverse, $x=g^{-1}(\theta)$ where $g^{-1}(g(x))=g\left(g^{-1}(x)\right)$.

$$
\frac{\delta x}{\delta \theta}=D_{\theta} g^{-1}(\theta)=\left(D_{x} g(x)\right)^{-1}
$$

Remarks:

1. For invertible functions, make the domain variable the subject of the formula.
2. Replace the Domain variable with that of the Range and vice versa.

Examples

Are these functions invertible?

$$
\begin{array}{lll}
\text { 1). } y=3 x^{2}-2 & \text { 2). } y=\ln x & \text { 3). } y=4 x-5
\end{array}
$$

Show that the derivative of an inverse function is the inverse of the derivative of the original function with the examples above.

Soln.

(2) and (3) are invertible while (1) is not. Why?

$$
\begin{aligned}
& \text { 3). } f^{-1}: x=\frac{1}{4} y+\frac{5}{4} \text { and } f: y=4 x-5 \rightarrow D f^{(-1)}=(D f)^{-1}=\frac{1}{4} \\
& \begin{array}{l}
\text { 2). } f^{-1}: x=e^{(y)} \text { and } f: y=\ln (x) \rightarrow D f^{(-1)}=(D f)^{-1}=x \\
\text { 1). } f^{-1}: x=\sqrt{\frac{1}{3} y+\frac{2}{3}} \text { and } f: y=3 x^{2}-2 \rightarrow D f^{(-1)}=\frac{1}{ \pm 6 x} \\
\\
\neq(D f)^{-1}=\frac{1}{6 x}
\end{array}
\end{aligned}
$$

In conclusion, for an inverse function derivative rule to hold, the function must be invertible, i.e. a well defined inverse function must exist (one to one correspondence) else, the Implicit function derivative rule applies i.e. whether the inverse function is well defined or not. We will revisit example (1) soon!

Outline

Second Order ET Revisited Examples
 Inverse Function Theorem Definition

Implicit Theorem
Definition

Outline

Second Order ET Revisited Examples
 Inverse Function Theorem Definition

Implicit Theorem

Definition

Conditions

- An equilibrium system i.e. $f(x, \theta)=0$
- Existence of a functional relationship between arguments i.e.

$$
x=g(\theta)
$$

Then, we could rewrite $f(x, \theta)=0$ as $f(g(\theta), \theta)=0$. Then, differentiating w.r.t θ gives $f_{1}(g(\theta), \theta) g_{\theta}(\theta)+f_{2}(g(\theta), \theta)=0$. If $f_{1}(g(\theta), \theta) \neq 0$ then $\frac{\delta x}{\delta \theta}=g_{\theta}(\theta)=\frac{-f_{2}(g(\theta), \theta)}{f_{1}(g(\theta), \theta)}$. Generally, for $f: S \subset \mathbb{R}^{n+m} \rightarrow \mathbb{R}^{n}$ be c^{1} on an open set S . Then,

$$
D g(\theta)=-\frac{D f_{\theta}(x, \theta)}{D f_{x}(x, \theta)} \text { and },\left|D f_{x}(x, \theta)\right| \neq 0
$$

Can we now confirm that the derivative of the previous onto function (since $y=f(x)=0 \epsilon \mathbb{R}$) is same using the direct derivative method and implicit derivative rule?

Examples

$$
\text { Find } \frac{\delta y}{\delta x}
$$

1. $3 y^{2} x-x y+5=19$

Inverse function or Implicit theorem and why?
2.

$$
\operatorname{Max}_{L} P Q-w L
$$

where $P=1$ and $Q=f(L)$
Inverse function or/and Implicit theorem and why?
1.)

$$
\begin{gathered}
3 y^{2}+x\left(6 y \frac{\delta y}{\delta x}\right)-\left(x \frac{\delta y}{\delta x}+y\right)=0 \\
\frac{\delta y}{\delta x}=\frac{1-3 y}{x(6-1)}
\end{gathered}
$$

Implicit Theorem:

$$
\operatorname{Max} f(L)-w L \rightarrow f_{L}(L)-w=0 \text { and } w=g(L)
$$

Since both conditions are satisfied, then:

$$
\frac{\delta L}{\delta w}=\frac{1}{f_{L L}(L)}
$$

Inverse Function Theorem:

Since the function is one-to-one correspondence, we have from (1) $w=f_{L}(L)$ with an inverse function of $L=f_{L}^{-1}(w)$. Therefore,

$$
\frac{\delta L}{\delta w}=f_{L w}^{-1}(w)=\left(\frac{\delta w}{\delta L}\right)^{-1}=\left(f_{L L}(L)\right)^{-1}=\frac{1}{f_{L L}(L)}
$$

Next week, we would dive into a formal and complete system comparative static analysis uing the Implicit Derivative Rule in matrix forms.

