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Recall

It shows that
Vθθ(θ) ≥ Fθθ(x, θ)

That is,
Vθθ(θ) = Fθθ(x, θ) + Fxθ(x, θ)Xθ

Then, Fxθ(x, θ)Xθ ≥ 0.

Implying sign(Fxθ(x, θ)) = sign(Xθ)

Interest

At this point,our interest gears towards establishing the effect
of the model parameters (θ) on the optimal solution X?(θ).
Most times, the objective functions are not explicitly defined,
then we have to leverage on the fact that
sign(Fxθ(x, θ)) = sign(Xθ) from Fxθ(x, θ)Xθ ≥ 0.
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Show the direction of each parameter impact on the choice variable(s).

Eg.1

arg max
x>0

px
1
2 − wx

fx =
1

2
px

−1
2 − w, fxp =

1

2
√
x
, and fxw = −1

Therefore, δx
δw < 0 and δx

δp < / > 0

Eg.2

arg max
x>0,y>0

U(x, y) s.t. pxx+ pyy ≤ I

 Lx = Ux(x, y)− λPx,  Ly = Uy(x, y)− λPy,  Lxpx =  Lypy = −λ

Therefore, δi
δpi

< 0 otherwise, 0. where i = {x, y}
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Eg.3: Pollution Control

xi : Pollution abatement of firm i. A =
∑n

i=1 xi : Total
abatements of all firms. c(xi, θi) : Abatement cost of firm i. θi :
Abatement cost parameter. B(A) : Social benefit of abatement.

fx = BA(

n∑
i=1

xi)− cx(xi, θi) and fxθ = −Cxθ(xi, θi)

Therefore, δx
δθ < 0

Eg.4

arg max
x1,x2≥0

−θ1x1 − θ2x2

fxi = −θi and fxiθi = −1, otherwise 0.Where i = {x, y}

Therefore δxi

δθi
< 0 otherwise, 0.
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Remarks:

Considering examples 2 & 4, we could not establish cross effects
directly. We therefore need to formally apply the implicit or
inverse function theorem to establish both direct and cross
(indirect) effects of the model’s parameters on the choice
variable(s).
These approaches are used when one variable is a function of
another, whether or not the functional form or relationship is
explicitly defined.
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For g : X → θ to be invertible, g must be a one-to-one
correspondence (bijection) (i.e. both one-to-one (injective) and
onto (surjective) function).
∀ one-to-one, f(x1) = f(x2) iff x1 = x2 but for onto function
f(x1) = f(x2) doesn’t necessarily mean that x1 = x2.

Remarks:

1. A matrix A = {ai,j}n×m is invertible if |A| 6= 0
2. Injective but not surjective functions has no defined f (−1)

3. Surjective but not injective functions has no well-defined
f (−1)

4. Bijection (Injective and surjective) functions has well-defined
f (−1)

For an invertible function θ = g(x), with inverse, x = g−1(θ)
where g−1(g(x)) = g(g−1(x)).

δx

δθ
= Dθg

−1(θ) = (Dxg(x))−1
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Remarks:
1. For invertible functions, make the domain variable the subject
of the formula.
2. Replace the Domain variable with that of the Range and vice
versa.

Examples

Are these functions invertible?

1). y = 3x2 − 2 2). y = lnx 3). y = 4x− 5

Show that the derivative of an inverse function is the inverse of
the derivative of the original function with the examples above.
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Soln.

(2) and (3) are invertible while (1) is not. Why?

3).f−1 : x =
1

4
y+

5

4
and f : y = 4x−5 → Df (−1) = (Df)−1 =

1

4

2).f−1 : x = e(y) and f : y = ln(x) → Df (−1) = (Df)−1 = x

1).f−1 : x =

√
1

3
y +

2

3
and f : y = 3x2 − 2 → Df (−1) =

1

±6x

6= (Df)−1 =
1

6x

In conclusion, for an inverse function derivative rule to hold, the
function must be invertible, i.e. a well defined inverse function
must exist (one to one correspondence) else, the Implicit
function derivative rule applies i.e. whether the inverse function
is well defined or not. We will revisit example (1) soon!
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Conditions

• An equilibrium system i.e. f(x, θ) = 0

• Existence of a functional relationship between arguments i.e.
x = g(θ)

Then, we could rewrite f(x, θ) = 0 as f(g(θ), θ) = 0. Then,
differentiating w.r.t θ gives f1(g(θ), θ)gθ(θ) + f2(g(θ), θ) = 0. If

f1(g(θ), θ) 6= 0 then δx
δθ = gθ(θ) = −f2(g(θ),θ)

f1(g(θ),θ)
. Generally, for

f : S ⊂ Rn+m → Rn be c1 on an open set S. Then,

Dg(θ) = −Dfθ(x, θ)
Dfx(x, θ)

and, |Dfx(x, θ)| 6= 0

Can we now confirm that the derivative of the previous onto
function (since y = f(x) = 0 ε R) is same using the direct
derivative method and implicit derivative rule?



Second Order ET Revisited Inverse Function Theorem Implicit Theorem

Examples

Find
δy

δx

1. 3y2x− xy + 5 = 19
Inverse function or Implicit theorem and why?
2.

MaxLPQ− wL

where P = 1 and Q = f(L)
Inverse function or/and Implicit theorem and why?
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1.)

3y2 + x(6y
δy

δx
)− (x

δy

δx
+ y) = 0

δy

δx
=

1− 3y

x(6− 1)

2.)

Implicit Theorem:

Maxf(L)− wL → fL(L)− w = 0 and w = g(L)

Since both conditions are satisfied, then:

δL

δw
=

1

fLL(L)
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...

Inverse Function Theorem:
Since the function is one-to-one correspondence, we have from
(1)
w = fL(L) with an inverse function of L = f−1

L (w). Therefore,

δL

δw
= f−1

Lw(w) =

(
δw

δL

)−1

= (fLL(L))−1 =
1

fLL(L)

Next week, we would dive into a formal and complete system
comparative static analysis uing the Implicit Derivative Rule in
matrix forms.
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