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Leading Principal Minor

A square matrix, {A}ij has n leading principal minors. Where
n = i = j

Given that

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33


The leading principal minors are:

D1 =
[
a11
]
, D2 =

[
a11 a12
a21 a22

]
andD3 =

a11 a12 a13
a21 a22 a23
a31 a32 a33
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Arbitrary Principal Minor

A square matrix, {A}ij has k− order arbitrary principal minors.
Where k = 1, 2, ..., n and n = i = j. This is derived from can-
celling different and unique equal (n − k) number of rows and
columns. Using the already defined {A}ij .

The arbitrary principal minors are:

∆1
1 =

[
a11
]
,∆2

1 =
[
a22
]
, and∆1

1 =
[
a33
]

∆1
2 =

[
a11 a12
a21 a22

]
,∆2

2 =

[
a11 a13
a31 a33

]
, and∆3

2 =

[
a22 a23
a32 a33

]
and

∆3 =

a11 a12 a13
a21 a22 a23
a31 a32 a33
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Elementary Row Operations

These operations do not change the solution set of a matrix
relative to the original system.

• Interchange two rows of a matrix

• Change a row by adding a multiple of another row to it

• Multiple each element in a row by the same nonzero scaler

Leading Zeros

A row of a matrix has k leading zeros if the first k element(s) of
the row are all zeros and the (k+ 1)th element is not zero in the
same row
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Row Echelon Form

A matrix is in row echelon form if each row has more leading
zeros than the row preceding it. This is also called Gaussian
form. It can be obtained by elementary row operations. Note, it
is different from Reduced Row Echelon Form/Gaussian Jordan
Form.
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Definition; Rank

The number of nonzero rows in a matrix’s row echelon form is
its rank. Given A = (aij)m×n, Rank(A) ≤ min(n,m). A is full
rank if Rank(A) = min(n,m). Alternatively, Rank(A) is the
order of the largest (n× n) minor of A that is different from
zero.

Examples:

Find the Rank of the following matrices. Which is full rank?

A =
[
2
]
, B =

[
1 8 9
3 −1 0

]
, C =

[
8 2
6 −11

]
,

D =

8 2
6 −11
1 0

 andE =

8 2 4
1 1 1
6 −11 5





Review on Minors Independence and Dependence Constraints Qualifications Inequality Constraints Optimization Shadow Price

Outline

Review on Minors
Leading Principle Minors
Arbitrary Minors

Independence and Dependence
Elementary Row Operations
Row Echelon
Ranks

Constraints Qualifications
Definition
Examples

Inequality Constraints Optimization
Remarks
Karush Kuhn Tucker Conditions
Lagrange Function for Inequality constraints

Shadow Price



Review on Minors Independence and Dependence Constraints Qualifications Inequality Constraints Optimization Shadow Price

Outline

Review on Minors
Leading Principle Minors
Arbitrary Minors

Independence and Dependence
Elementary Row Operations
Row Echelon
Ranks

Constraints Qualifications
Definition
Examples

Inequality Constraints Optimization
Remarks
Karush Kuhn Tucker Conditions
Lagrange Function for Inequality constraints

Shadow Price



Review on Minors Independence and Dependence Constraints Qualifications Inequality Constraints Optimization Shadow Price

Let hE = {hi(x?)}iεE(x?) be the set of binding constraints at x?,
where E(x?) denote the set of binding constraints at x?. Then,
a solution exists if (CQ1) DhE(x?) is full rank and (the CQ2 or
slater’s condition) {hi(x?)}iεE(x?) are concave (pseudo-concave)
and there exist x′ such that hi(x′) > 0.
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Remarks:

1. CQ1 uses the Jacobian matrix of the binding constraints
2. A square matrix X = {aij}n×n of order n is full rank, i.e
r(A) = n if det(X) 6= 0.
3. We have 2k different combinations of binding constraints to
consider. Where k is the # of binding constraints.
k = k, (k − 1), (k − 2), ..., (k − k + 1), (k − k). i.e. all constraints
binding, (k-1) constraint(s) binding, etc. Under each
consideration, form the jacobian matrix (individually or
collectively) and check for full rank with the optimal solution
set, x, that satisfies all the constraints.
4. If CQ1 fails, then those optimal solution set,x, are additional
solutions to the optimization problem.
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Example 1

arg max
c≥0

U(c)

subject to pc ≤ I, c ≥ 0.

Soln.
1. k = 2 constraints are binding
i.e. pc = l and c = 0

J1,2 =

[
p
1

]
or J1 =

[
p
]

and J2 =
[
1
]
. Notice that the jacobian matrices

are full rank hence, CQ1 is satisfied
2. k = 1 constraint is binding
1.1. pc = l is binding, J1 =

[
p
]

which is full rank

1.2 c = 0 is binding, J2 =
[
1
]
, full rank

3. k = 0 constraint is binding
no jacobian matrix. Generally, CQ1 is satisfied.

CQ2 is also satisfied since, pc = l and c = 0 are concave in c.
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Example 2

arg max
c1≥0,c2≥0

U(c1, c2)

subject to p1c1 + p2c2 ≤ I, c1 ≥ 0 , and c2 ≥ 0

Soln.
1. k = 3 constraints are binding
i.e. p1c1 + p2c2 = l, c1 = 0, and c2 = 0

J1,2,3 =

p1 p2
1 0
0 1

 or J1 =
[
p1 p2

]
, J2 =

[
1 0

]
, and J3 =

[
0 1

]
Notice that the jacobian matrices are full rank hence, CQ1 is
satisfied
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2. k = 2 constraints are binding

2.1. p1c1 + p2c2 = l and c1 ≥ 0 are binding, J1,2 =

[
p1 p2
1 0

]
full rank

2.2 p1c1 + p2c2 = l, and c2 = 0 are binding, J1,3 =

[
p1 p2
0 1

]
,

full rank

2.3 c1 = 0, and c2 = 0 are binding, J2,3 =

[
1 0
0 1

]
, full rank

3. k = 1 constraint is binding
3.1. p1c1 + p2c2 = l is binding, J1 =

[
p1 p2

]
which is full rank

3.2 c1 = 0 is binding, J2 =
[
1 0

]
, full rank

3.3 c2 = 0 is binding, J3 =
[
0 1

]
, full rank

4. k = 0 constraint is binding
no jacobian matrix. Generally, CQ1 is satisfied.
CQ2 is also satisfied since pc = l and c = 0 are concave in
c1 and c2.
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More examples

arg max
x,y

xy

subject to x ≥ 0, y ≥ 0, and (1− x)3 − y ≥ 0

arg max
x

x− 1

subject to −(x− 1)2 ≥ 0
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Remarks:
1. Optimize using only the binding constraints.
2. Convert the inequality constraints (≤) to equality constraints.
3. State the FONCs
4. State the KKT condtions
5. Solve for all the possible solutions in 2k possible combinations
of the constraints. where k is the # of binding constraints
6. In each combination, rewrite all FONCs and KKTCs to solve
for the solutions and check if it satisfy all the (binding) con-
straints
7. Check all the possible solutions to find the optimal solution
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KKT Conditions

{λi(gi(x)− bi)}ki=1 = 0, {λi}ki=1 ≥ 0, and {gi(x)− bi}ki=1 ≤ 0
if the ith constraint is binding then,

λi > 0, gi(x)− bi = 0, and λi(gi(x)− bi) = 0. Otherwise,
λi = 0, gi(x)− bi < 0, and λi(gi(x)− bi) = 0.

2k combinations

they are k binding ,(k − 1)binding,(k − 2)binding
,...,(k − k + 1)binding,
(k − k)binding.
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Forms

• For a maximization problem; Max f(x) s.t. g(x) ≤ 0.
Lmax = f(x) + λ(−g(x)) same as Lmax = f(x)− λ(g(x))
Equivalently,
Lmin = −f(x) + λ(−g(x)) or Lmin = −f(x)− λ(g(x))

• For a minimization problem; Min f(x) s.t. g(x) ≤ 0.
Lmin = f(x) + λ(−g(x)) same as Lmin = f(x)− λ(g(x))
Equivalently,
Lmax = −f(x) + λ(−g(x)) or Lmax = −f(x)− λ(g(x))

Remarks (Personal Tricks):
1. The variances with equality constraints is due to the fact the
inequality constraints are converted to equality constraints.
2. Generally and irrespective of Max. or Min., when you use
{gi(x)}ki=1 ≤ 0 then sign(λ) < 0 but if {gi(x)}ki=1 ≥ 0 then sign(λ) > 0.

3. Equivalent cases corresponds to −f(x) and not −(Lmax).
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Inequaity Constrained Optimization Example

(x?, y?) ε arg max
x,y

3x+ 4y

subject to x2 + y2 ≤ 4, and x ≥ 1
The CQs can be checked before or after obtaining the optimal
solution.

Soln.

The constraints can be transformed to x2 + y2 ≤ 4, and
−x ≤ −1
L = 3x+ 4y − λ1(x2 + y2 − 4)− λ2(1− x)
FONCs
Lx = 3− 2xλ1 + λ2 = 0
Ly = 4− 2yλ1 = 0
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...

KKTCs
λ1 ≥ 0, x2 + y2 − 4 ≤ 0, and λ1(x

2 + y2 − 4) = 0
λ2 ≥ 0, 1− x ≤ 0, and λ2(1− x) = 0
2k combinations
a.) λ1 > 0 and λ2 > 0
then we solve
3− 2xλ1 + λ2 = 0... eqn.(1)
4− 2yλ1 = 0 ... eqn.(2)
x2 + y2 − 4 = 0 ... eqn.(3)
1− x = 0 ... eqn.(4)
from eqn.(4) we get x = 1. we use it in eqn.(3) to get y =

√
3.

We use y in eqn.(2) to get λ1 = 2
√
3

3 . We use x and λ1 in

eqn.(1) to get λ2 = 4
√
3−9
3 < 0. Recall we are solving under

λ2 > 0, so λ2 = 4
√
3−9
3 does not satisfy this binding condition.

Hence (x, y, λ1, λ2) = (1,
√

3, 2
√
3

3 , 4
√
3−9
3 ) & (1,−

√
3, 2
√
3

3 , 4
√
3−9
3 ) are

not feasible solutions to the problem
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...

2k combinations
b.) λ1 > 0 and λ2 = 0
then we solve
3− 2xλ1 = 0... eqn.(1)
4− 2yλ1 = 0 ... eqn.(2)
x2 + y2 − 4 = 0 ... eqn.(3)
1− x < 0 ... exp.(4)
from eqn.(1) we get λ1 = 3

2x and from eqn.(2) we get λ1 = 2
y .

Equating these, we get x = 3y
4 . Also, from eqn.(3),

x = ±
√

4− y2. Equating these two gives y = ±8
5 . Then λ1 = 5

4
and x = 6

5 . Hence (λ1, λ2, x, y) = (54 , 0,
6
5 ,

8
5) is a feasible

solutions to the problem since x > 1 from exp.(4).
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...

2k combinations
c.) λ1 = 0 and λ2 > 0
then we solve
3− λ2 = 0... eqn.(1)
4 = 0 ... eqn.(2)
x2 + y2 − 4 < 0 ... exp.(3)
1− x = 0 ... eqn.(4)
from eqn.(4) and eqn(1) we get x = 1 and λ2 = 3. From eqn.(3)
we get y < ±

√
3 and from eqn.(2), we see 4 = 0. But this is not

true as 4 6= 0. Hence, no solution exists for this case.
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...

2k combinations
d.) λ1 = λ2 = 0
then we solve
3 = 0... eqn.(1)
4 = 0 ... eqn.(2)
x2 + y2 − 4 < 0 ... exp.(3)
1− x < 0 ... eqn.(4)
from eqn.(1) and eqn.(2), no solution exists for this case.

checking for the maximizer

In all, the only feasible solution set (and unique maximizer) we
have is (λ1, λ2, x, y) = (54 , 0,

6
5 ,

8
5), Therefore, the value function

becomes f(x = 6
5 , y = 8

5) = 10. we can also rewrite the
lagrangian function as L = 3x+ 4y− 5

4x
2 − 5

4y
2 + 5. Finally we

can show that the lagrange function is concave in x and y using
appropriate methodologies.
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Constraint Qualification Tests

1. k = 2 constraints are binding
i.e. x2 + y2 = 4, and 1− x = 0

J1,2 = DhE(x?,y?) =

[
2x 2y
−1 0

]
x=x?,y=y?

or J1 =
[
2x 2y

]
,

J2 =
[
−1 0

]
, are full rank hence, CQ1 is satisfied

2. k = 1 constraints are binding
2.1. x2 + y2 = 4 is binding, J1 =

[
2x 2y

]
full rank

2.2. 1− x = 0 is binding, J2 =
[
−1 0

]
, full rank

3. k = 0 is binding
No jacobian matrix. Therefore, CQ1 is satisfied
In addition, is CQ2 satisfied?
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Other Examples

arg max
x1,x2

√
x1x2

subject to x21 + x22 ≤ 5, and x1, x2 ≥ 0

arg min
x1,x2

2x21 + 2x1x2 + x22 − 10x1 − 10x2

subject to x21 + x22 ≤ 5, and 3x1 + x2 ≤ 6

arg max
x,y

2x2 + 3xy

subject to 1
2x

2 + y ≤ 4, and −y ≤ −2

arg max
x1,x2

x21 + 2x2 + 2x23

subject to 2x21 − x22 − 3x3 = 0, and x2 − x3 = 3
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λ is the shadow price on the constraint. It is the ratio of the
change in the value function to the change in the constraint,
λ = dV

dc = df(x?)
dc .

Recall this problem

arg max
c1≥0,c2≥0

U(c1, c2)

subject to p1c1 + p2c2 ≤ I, c1 > 0 , and c2 > 0

Lmax = U(c1, c2) + λ(I − p1c1 − p2c2) ...eqn(1)
FONCs

Lc1 = Uc1(c1, c2)− p1λ = 0 ...eqn.(2)
Lc2 = Uc2(c1, c2)− p2λ = 0 ...eqn.(3)
Lλ = I − p1c1 − p2c2 = 0 ...eqn.(4)

Combining these three equations eqn.(2), eqn.(3), & eqn.(4) would
produce the maximizers c?1(p1, p2, l), c

?
2(p1, p2, l), and λ?(p1, p2, l).
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The value function,

V (p1, p2, l) = arg max
c1>0,c2>0

U(c1, c2)

becomes
V (p1, p2, l) = U(c?1(p1, p2, l), c

?
2(p1, p2, l))+λ

?(p1, p2, l){I−p1c?1(p1, p2, l)
−p2c?2(p1, p2, l)}
Our interest now is to see how the value function would change
when the income constraint changes i.e. δV (p1,p2,l)

δI .
δV (p1,p2,l)

δI = Uc?1
δc?1
δI + Uc?2

δc?2
δI + λ?(1− p1

δc?1
δI − p2

δc?2
δI )+

δλ?

δI (I − p1c?1 − p2c?2)
Recall, I − p1c?1 − p2c?2 = 0, then we can rewrite the equation as
δV (p1,p2,l)

δI = Uc?1
δc?1
δI + Uc?2

δc?2
δI + λ?(1− p1

δc?1
δI − p2

δc?2
δI )

δV (p1,p2,l)
δI = Uc?1

δc?1
δI + Uc?2

δc?2
δI + λ? − p1λ?

δc?1
δI − p2λ

? δc
?
2

δI
δV (p1,p2,l)

δI = (Uc?1 − p1λ
?)
δc?1
δI + (Uc?2 − p2λ

?)
δc?2
δI + λ?.

Since c?1(p1, p2, l), c
?
2(p1, p2, l), and λ?(p1, p2, l) are the values that

satisfy eqn.(2), eqn.(3), & eqn.(4), then δV (p1,p2,l)
δI = λ?
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Examples

Solving
arg max

x
f(x) = x2

s.t c ≥ x and x > 0
gives that x? = c and λ? = 2x = 2c.
However, the value function V (c) = c2 then dV (c)

dc = 2c = λ?

Pseudo Midter is on 20/09/2019
GoodLuck!!!
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