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Convexity and Concavity Constrained Optimization

Definition: Convex Set

Aset SCR"isconvexif ze SV x e S and x/ € S. Where z, x/ €
R™, « € [0,1] and convex combination z = ax + (1 — a)x/.

Remarks:

1). Get arbitrary two (2) points. Eg in
R!: z; and 9,

R?: (z1,91) and (22, y2),

R3: (z1,91,21) and (2, y2, 22),

2). Get the convex combination(s). Eg in

Rl Z = az + (1 — o)z,

R%: Z = (axy + (1 — a)z2, ayr + (1 — a)ys),

R3: Z = (az1 + (1 — @)xa, ayr + (1 — a)ya, az1 + (1 — a)z2),
etc.
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Remarks Cont.

3). Use the definition on the arbitrary points i.e. what you
know. Eg if {(I’,y)‘.’ﬂ > Oa f(x) > y}7 then, 1 > 07 f(xl) > A
25> 0 and f(z2) > .

4). Use the definitions of the curvature and what you know
(i.e. point 3) to show that the convex combination, Z, belongs
to the set; it satisfies z; > 0 and f(z1) > 22, where

Z =(z1,22) = (ax1 + (1 — @)x2,ay1 + (1 — @)y2)

5). Use the curvature definitions to show the function is
concave (convex) i.e. f(Z) > (<) af(x1)+ (1 — a)f(z2) holds
for concavity (convexity), where Z = ax; + (1 — a)xs.
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Examples

Show whether these sets are convex sets.
e S =110,30], S = (10,30) and S = (10, 30]
e =Rand P=N

o X eR? X = {(z1,22)|2? + 23 < 4} and
Y eR%L Y = {(y1,92)|vf + 93 > 4}

e Set of feasible consumption bundles I'(p, 1) = {c|¢; > 0, pc <
I}, where ¢,p e R} and [ € Ry

Remarks:
1.Feasible Choice set is often convex.
2.Sketching the set is advisable.
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Convexity and Concavity Constrained Optimization

Definition: Convex Function

For a convex domain D, a function f is convex over D if
f(z) <af(z1)+ (1 —a)f(z2) ¥V a€l0,1], z1,22 € D and
z = axy + (1 — a)xe is the convex combination.

Examples
Show whether these functions are convex functions
o f(z)=x+2
o k(z) =2+2% and x ¢ R!
e h(z) = sin(z) and z € (0,2m)
e g(z) = sin(z) and z € (7, 27)
e Show that f(x) =1 — 22 is a concave function

Remarks:
1.Sketching the function over its domain is advisable.
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Convexity and Concavity Constrained Optimization
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Unconstrained Curvature: One Variable

e Concavity is defined as fr > / < 0 and fr < 0 over its
domain.

e Convexity is defined as f/ > / < 0 and f#7 > 0 over its
domain.

e We have strict concavity /convexity if f/# < 0/fn > 0 respec-
tively.
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Unconstrained Curvature: Two Variables

e Concavity is defined as fz, 2, <0, fzy0, <0 and
s o s — (fgcl,m)2 > 0 over its domain.

e Convexity is defined as fz, z; > 0, fr,.2, > 0 and
farzy faozs — (furz0)? > 0 over its domain.

e We have strict concavity fu, z <0, fzy2, <0 and
Jai 21 faoms— (fgclm)2 > 0 over its domain.

e We have strict convexity f;, » >0, fz2, > 0 and
forzr feows — (for,20)? > 0 over its domain.
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Unconstrained Curvature: More than two Variable
We adopt the Hessian matrix, H, of f at x

- 55 52 82f
dx? dx16z2 " dx:10Tn
I, i

H _ 0x20T1 53:% Tt 0T20Tn
52 f &2f &f

Lozndx1  dxpndzy or2 |
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Concavity is defined as negative semi-definite i.e.
(-D)kAL >0V k

Convexity is defined as positive semi-definite i.e.

A, >0Vk

Strict concavity is defined as negative definite i.e.
(-1)¥Dy, >0V k

Strict convexity is defined as positive definite i.e.
D >0Vk

Where Dy is the leading principal minor and Ay is the
arbitrary principal minor of order k. £k =1,2,...,n. n is the
dimension of the matrix.
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Constrained Curvature
We adopt the Bordered Hessian matrix H of % at x

_ [D2Z (=", \) Dg(a*)

H =
(Dg(a*))" 0
Lo g1 Lo Lran | Loin Loine o L
Lowr  Laozs Lrozn | Looni Loore - Lrg
gxn7$1 gxnny s gxn7$n | gwny)\l gwny)\Q ot "E/ﬂl'nv/\k
g)\hxl gAlﬂrz s g&@n | gAh/\l gA17/\2 s "%)\1)\1@
f,\27x1 f)\%m - f,\%xn | f)\%)\l f)\27)\2 f)\%}\k
_"g}\k,m f)\kﬂ?Q -iﬂ/\k,xn | .iﬂ)\k’)\l g)\h,\Q g)\k’,\k_
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e Concavity is defined as negative semi-definite i.e. if
sign(det(H)) = (—1)" and sign(last (n—k) leading principal
minors of H) alternates.

e Convexity is defined as positive semi-definite i.e. if
sign(last (n — k) leading principal minors of H) are same as

(-

Remarks:

1. Where n is the # of choice variables and k is the # of con-
straints.

2. FONC corresponds to critical points while SOSC corresponds
to the curvature at x*.
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Examples

Determine the curvature of the following
f(z) =323 — 222+ 8

flz,y) =2z —y — x2 + 2zy — y?
Q(z,y,2) = —x? + 62y + Syz — 9y? — 222

See the note on review of Linear Algebra
(matrices & determinants)
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Setting up the Lagrange Method

Remarks (Personal Tricks):
1. Otherwise defined, ensure that sign(\) = sign(a), where
a is a constant.

2. Preferably; for maximization problems let sign(\) = sign(a) >
0 and sign(\) = sign(a) < 0 for minimization problems.

3. Equivalent scenarios; let g(x) = — f(x) then max, f(z) is same
as min, g(z) and vice versa.



ty and Concavity Constrained Optimization
[e]e] e}

Examples

e For a maximization problem; %0, = f(x) + A( — px).
Equivalently,
L = _(gmax) = —f(X) - )‘(I - pX) or
gmz‘n = _(gmaw) = —f(X) + )\(px - I)

e For a minimization problem; Z,,;,, = wl+rk—A(f(k,1)—Q).
Equivalently,
Lnaz = _(gmzn) = —wl—rk+ )‘(f(k> l) - Q) or
Lmar = —(Lmin) = —wl —rk — XNQ — f(k,1))
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lems:

Show the FONC and SOSC of the following optimization prob-
[ ]

(ci,¢3) e argmax Ufey, c2)
c120,c22>0
subject to pic1 + pace = 1.

(21, 25) € argmin wix; + waxs
x12>0,22>0
subject to f(z1,22) =y
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