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Convexity and Concavity Constrained Optimization

Definition: Convex Set

A set S ⊂ Rn is convex if z ε S ∀ x ε S and x′ ε S. Where x, x′ ε
Rn, α ε [0,1] and convex combination z = αx+ (1− α)x′.

Remarks:

1). Get arbitrary two (2) points. Eg in
R1: x1 and x2,
R2: (x1, y1) and (x2, y2),
R3: (x1, y1, z1) and (x2, y2, z2),
etc.
2). Get the convex combination(s). Eg in
R1: Z = αx1 + (1− α)x2,
R2: Z = (αx1 + (1− α)x2, αy1 + (1− α)y2),
R3: Z = (αx1 + (1− α)x2, αy1 + (1− α)y2, αz1 + (1− α)z2),
etc.



Convexity and Concavity Constrained Optimization

Remarks Cont.

3). Use the definition on the arbitrary points i.e. what you
know. Eg if {(x, y)|x ≥ 0, f(x) ≥ y}, then, x1 ≥ 0, f(x1) ≥ y1
x2 ≥ 0 and f(x2) ≥ y2.
...
4). Use the definitions of the curvature and what you know
(i.e. point 3) to show that the convex combination, Z, belongs
to the set; it satisfies z1 ≥ 0 and f(z1) ≥ z2, where
Z = (z1, z2) = (αx1 + (1− α)x2, αy1 + (1− α)y2)
...
5). Use the curvature definitions to show the function is
concave (convex) i.e. f(Z) ≥ (≤) αf(x1) + (1− α)f(x2) holds
for concavity (convexity), where Z = αx1 + (1− α)x2.
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Examples

Show whether these sets are convex sets.

• S = [10, 30], S = (10, 30) and S = (10, 30]

• Q = R and P = N

• X ε R2, X = {(x1, x2)|x21 + x22 ≤ 4} and
Y ε R2, Y = {(y1, y2)|y21 + y22 ≥ 4}

• Set of feasible consumption bundles Γ(p, l) = {c|ci ≥ 0, pc ≤
l}, where c, p ε Rn+ and l ε R+

Remarks:
1.Feasible Choice set is often convex.
2.Sketching the set is advisable.
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Convexity and Concavity Constrained Optimization

Definition: Convex Function

For a convex domain D, a function f is convex over D if
f(z) ≤ αf(x1) + (1− α)f(x2) ∀ α ε [0,1], x1, x2 ε D and
z = αx1 + (1− α)x2 is the convex combination.

Examples

Show whether these functions are convex functions

• f(x) = x+ 2

• k(x) = 2 + x2 and x ε R1

• h(x) = sin(x) and x ε (0, 2π)

• g(x) = sin(x) and x ε (π, 2π)

• Show that f(x) = 1− x2 is a concave function

Remarks:
1.Sketching the function over its domain is advisable.
2. Study the properties of concavity and convexity.
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Convexity and Concavity Constrained Optimization

Unconstrained Curvature: One Variable

• Concavity is defined as f ′ ≥ / ≤ 0 and f ′′ ≤ 0 over its
domain.

• Convexity is defined as f ′ ≥ / ≤ 0 and f ′′ ≥ 0 over its
domain.

• We have strict concavity/convexity if f ′′ < 0/f ′′ > 0 respec-
tively.
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Unconstrained Curvature: Two Variables

• Concavity is defined as fx1,x1 ≤ 0, fx2,x2 ≤ 0 and
fx1,x1fx2,x2 − (fx1,x2)2 ≥ 0 over its domain.

• Convexity is defined as fx1,x1 ≥ 0, fx2,x2 ≥ 0 and
fx1,x1fx2,x2 − (fx1,x2)2 ≥ 0 over its domain.

• We have strict concavity fx1,x1 < 0, fx2,x2 < 0 and
fx1,x1fx2,x2 − (fx1,x2)2 > 0 over its domain.

• We have strict convexity fx1,x1 > 0, fx2,x2 > 0 and
fx1,x1fx2,x2 − (fx1,x2)2 > 0 over its domain.
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Unconstrained Curvature: More than two Variable

We adopt the Hessian matrix, H, of f at x

H =


δ2f
δx21

δ2f
δx1δx2

. . . δ2f
δx1δxn

δ2f
δx2δx1

δ2f
δx22

. . . δ2f
δx2δxn

...
...

. . .
...

δ2f
δxnδx1

δ2f
δxnδx2

. . . δ2f
δx2n


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• Concavity is defined as negative semi-definite i.e.
(−1)k∆k ≥ 0 ∀ k

• Convexity is defined as positive semi-definite i.e.
∆k ≥ 0 ∀ k

• Strict concavity is defined as negative definite i.e.
(−1)kDk > 0 ∀ k

• Strict convexity is defined as positive definite i.e.
Dk > 0 ∀ k.

Where Dk is the leading principal minor and ∆k is the
arbitrary principal minor of order k. k = 1, 2, . . . , n. n is the
dimension of the matrix.
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Constrained Curvature

We adopt the Bordered Hessian matrix H of L at x

H =

[
D2
xL (x∗, λ∗) Dg(x∗)

(Dg(x∗))T 0

]



Lx1,x1 Lx1,x2 . . . Lx1,xn | Lx1,λ1 Lx1,λ2 . . . Lx1,λk

Lx2,x1 Lx2,x2 . . . Lx2,xn | Lx2,λ1 Lx2,λ2 . . . Lx2,λk
...

...
. . .

... |
...

...
. . .

...
Lxn,x1 Lxn,x2 . . . Lxn,xn | Lxn,λ1 Lxn,λ2 . . . Lxn,λk

−− −− −− −− | −− −− −− −−
Lλ1,x1 Lλ1,x2 . . . Lλ1,xn | Lλ1,λ1 Lλ1,λ2 . . . Lλ1,λk

Lλ2,x1 Lλ2,x2 . . . Lλ2,xn | Lλ2,λ1 Lλ2,λ2 . . . Lλ2,λk
...

...
. . .

... |
...

...
. . .

...
Lλk,x1 Lλk,x2 . . . Lλk,xn | Lλk,λ1 Lλk,λ2 . . . Lλk,λk


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...

• Concavity is defined as negative semi-definite i.e. if
sign(det(H)) = (−1)n and sign(last (n−k) leading principal
minors of H) alternates.

• Convexity is defined as positive semi-definite i.e. if
sign(last (n−k) leading principal minors of H) are same as
(−1)k

Remarks:
1. Where n is the # of choice variables and k is the # of con-
straints.
2. FONC corresponds to critical points while SOSC corresponds
to the curvature at x∗.
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Examples

Determine the curvature of the following

• f(x) = 3x3 − 2x2 + 8

• f(x, y) = 2x− y − x2 + 2xy − y2

• Q(x, y, z) = −x2 + 6xy + 8yz − 9y2 − 2z2

• See the note on review of Linear Algebra
(matrices & determinants)
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Convexity and Concavity Constrained Optimization

Setting up the Lagrange Method

Remarks (Personal Tricks):
1. Otherwise defined, ensure that sign(λ) ≡ sign(α), where
α is a constant.
...
2. Preferably; for maximization problems let sign(λ) ≡ sign(α) >
0 and sign(λ) ≡ sign(α) < 0 for minimization problems.
...
3. Equivalent scenarios; let g(x) = −f(x) then maxx f(x) is same
as minx g(x) and vice versa.
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Examples

• For a maximization problem; Lmax = f(x) + λ(I − px).
Equivalently,
Lmin = −(Lmax) = −f(x)− λ(I − px) or
Lmin = −(Lmax) = −f(x) + λ(px− I)

• For a minimization problem; Lmin = wl+rk−λ(f(k, l)−Q).
Equivalently,
Lmax = −(Lmin) = −wl − rk + λ(f(k, l)−Q) or
Lmax = −(Lmin) = −wl − rk − λ(Q− f(k, l))
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Examples

Show the FONC and SOSC of the following optimization prob-
lems:

•
(c∗1, c

∗
2) ε arg max

c1≥0,c2≥0
U(c1, c2)

subject to p1c1 + p2c2 = I.

•
(x∗1, x

∗
2) ε arg min

x1≥0,x2≥0
w1x1 + w2x2

subject to f(x1, x2) = y
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