Convexity, Concavity and Equality Optimization

Introductory Mathematical Economics

David Ihekereleome Okorie October 10th 2019

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Constrained Optimization

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < ○ < ○ </p>

Outline

Convexity and Concavity Convex Sets Convex Function Convexity and Concavity

Constrained Optimization

Outline

Convexity and Concavity

Convex Sets Convex Function Convexity and Concavity

Constrained Optimization 0000

Outline

Convexity and Concavity Convex Sets

Convex Function Convexity and Concavity

Definition: Convex Set

A set $S \subset \mathbb{R}^n$ is convex if $z \in S \forall x \in S$ and $x' \in S$. Where $x, x' \in \mathbb{R}^n$, $\alpha \in [0,1]$ and convex combination $z = \alpha x + (1 - \alpha)x'$.

Remarks:

1). Get arbitrary two (2) points. Eg in \mathbb{R}^1 : x_1 and x_2 , \mathbb{R}^2 : (x_1, y_1) and (x_2, y_2) , \mathbb{R}^3 : (x_1, y_1, z_1) and (x_2, y_2, z_2) , etc. 2). Get the convex combination(s). Eg in \mathbb{R}^1 : $Z = \alpha x_1 + (1 - \alpha) x_2$, \mathbb{R}^2 : $Z = (\alpha x_1 + (1 - \alpha) x_2, \alpha y_1 + (1 - \alpha) y_2)$, \mathbb{R}^3 : $Z = (\alpha x_1 + (1 - \alpha) x_2, \alpha y_1 + (1 - \alpha) y_2, \alpha z_1 + (1 - \alpha) z_2)$, etc. . . .

. . .

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Remarks Cont.

3). Use the definition on the arbitrary points i.e. what you know. Eg if $\{(x,y)|x \ge 0, f(x) \ge y\}$, then, $x_1 \ge 0, f(x_1) \ge y_1$ $x_2 \ge 0$ and $f(x_2) \ge y_2$.

4). Use the definitions of the curvature and what you know (i.e. point 3) to show that the convex combination, Z, belongs to the set; it satisfies $z_1 \ge 0$ and $f(z_1) \ge z_2$, where $Z = (z_1, z_2) = (\alpha x_1 + (1 - \alpha) x_2, \alpha y_1 + (1 - \alpha) y_2)$

5). Use the curvature definitions to show the function is concave (convex) i.e. $f(Z) \ge (\le) \alpha f(x_1) + (1-\alpha)f(x_2)$ holds for concavity (convexity), where $Z = \alpha x_1 + (1-\alpha)x_2$.

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

Examples

Show whether these sets are convex sets.

• S = [10, 30], S = (10, 30) and S = (10, 30]

•
$$Q = \mathbb{R}$$
 and $P = \mathbb{N}$

• X
$$\epsilon \mathbb{R}^2$$
, X = { $(x_1, x_2) | x_1^2 + x_2^2 \le 4$ } and
Y $\epsilon \mathbb{R}^2$, Y = { $(y_1, y_2) | y_1^2 + y_2^2 \ge 4$ }

• Set of feasible consumption bundles $\Gamma(p, l) = \{c | c_i \ge 0, pc \le l\}$, where $c, p \in \mathbb{R}^n_+$ and $l \in \mathbb{R}_+$

Remarks:

1. Feasible Choice set is often convex.

2.Sketching the set is advisable.

Constrained Optimization 0000

◆ロト ◆昼 ト ◆臣 ト ◆臣 - のへで

Outline

Convexity and Concavity

Convex Sets Convex Function Convexity and Concavi

Definition: Convex Function

For a convex domain D, a function f is convex over D if $f(z) \leq \alpha f(x_1) + (1 - \alpha)f(x_2) \forall \alpha \in [0,1], x_1, x_2 \in D$ and $z = \alpha x_1 + (1 - \alpha)x_2$ is the convex combination.

Examples

Show whether these functions are convex functions

•
$$f(x) = x + 2$$

•
$$k(x) = 2 + x^2$$
 and $x \in \mathbb{R}^1$

- h(x) = sin(x) and $x \in (0, 2\pi)$
- g(x) = sin(x) and $x \in (\pi, 2\pi)$
- Show that $f(x) = 1 x^2$ is a concave function

Remarks:

1. Sketching the function over its domain is advisable.

Constrained Optimization

Outline

Convexity and Concavity

Convex Sets Convex Function Convexity and Concavity

(日)

Unconstrained Curvature: One Variable

- Concavity is defined as $f' \ge / \le 0$ and $f'' \le 0$ over its domain.
- Convexity is defined as $f' \ge / \le 0$ and $f'' \ge 0$ over its domain.
- We have strict concavity/convexity if $f\prime\prime < 0/f\prime\prime > 0$ respectively.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Unconstrained Curvature: Two Variables

- Concavity is defined as $f_{x_1,x_1} \leq 0$, $f_{x_2,x_2} \leq 0$ and $f_{x_1,x_1}f_{x_2,x_2} (f_{x_1,x_2})^2 \geq 0$ over its domain.
- Convexity is defined as $f_{x_1,x_1} \ge 0$, $f_{x_2,x_2} \ge 0$ and $f_{x_1,x_1}f_{x_2,x_2} (f_{x_1,x_2})^2 \ge 0$ over its domain.
- We have strict concavity $f_{x_1,x_1} < 0$, $f_{x_2,x_2} < 0$ and $f_{x_1,x_1}f_{x_2,x_2} (f_{x_1,x_2})^2 > 0$ over its domain.
- We have strict convexity $f_{x_1,x_1} > 0$, $f_{x_2,x_2} > 0$ and $f_{x_1,x_1}f_{x_2,x_2} (f_{x_1,x_2})^2 > 0$ over its domain.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Unconstrained Curvature: More than two Variable

We adopt the Hessian matrix, H, of f at \mathbf{x}

$$H = \begin{bmatrix} \frac{\delta^2 f}{\delta x_1^2} & \frac{\delta^2 f}{\delta x_1 \delta x_2} & \cdots & \frac{\delta^2 f}{\delta x_1 \delta x_n} \\ \frac{\delta^2 f}{\delta x_2 \delta x_1} & \frac{\delta^2 f}{\delta x_2^2} & \cdots & \frac{\delta^2 f}{\delta x_2 \delta x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\delta^2 f}{\delta x_n \delta x_1} & \frac{\delta^2 f}{\delta x_n \delta x_2} & \cdots & \frac{\delta^2 f}{\delta x_n^2} \end{bmatrix}$$

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Convexity and Concavity

- Concavity is defined as negative semi-definite i.e. $(-1)^k \Delta_k \ge 0 \ \forall \ \mathbf{k}$
- Convexity is defined as positive semi-definite i.e. $\Delta_k \geq 0 ~\forall~ \mathbf{k}$
- Strict concavity is defined as negative definite i.e. $(-1)^k D_k > 0 \ \forall \ \mathbf{k}$
- Strict convexity is defined as positive definite i.e. $D_k > 0 \ \forall \ k.$

Where D_k is the **leading principal minor** and Δ_k is the **arbitrary principal minor** of order k. k = 1, 2, ..., n. *n* is the dimension of the matrix.

Constrained Optimization

Constrained Curvature

We adopt the Bordered Hessian matrix ${\bf H}$ of ${\mathscr L}$ at ${\bf x}$

$$\mathbf{H} = \begin{bmatrix} \mathbf{D}_x^2 \mathscr{L}(x^*, \lambda^*) & \mathbf{D}g(x^*) \\ (\mathbf{D}g(x^*))^T & \mathbf{0} \end{bmatrix}$$

. . .

• Convexity is defined as positive semi-definite i.e. if sign(last (n-k) leading principal minors of H) are same as $(-1)^k$

Remarks:

1. Where n is the # of choice variables and k is the # of constraints.

2. FONC corresponds to critical points while SOSC corresponds to the curvature at \mathbf{x}^* .

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Examples

Determine the curvature of the following

• $f(x) = 3x^3 - 2x^2 + 8$

•
$$f(x,y) = 2x - y - x^2 + 2xy - y^2$$

•
$$Q(x, y, z) = -x^2 + 6xy + 8yz - 9y^2 - 2z^2$$

• See the note on review of Linear Algebra (matrices & determinants)

Constrained Optimization

◆ロト ◆昼 ト ◆臣 ト ◆臣 - のへで

Outline

Convexity and Concavity Convex Sets Convex Function Convexity and Concavit

Constrained Optimization

Lagrange Approach

Constrained Optimization $\bullet \circ \circ \circ$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● の Q ()

Outline

Convexity and Concavity Convex Sets Convex Function Convexity and Concavit

. . .

. . .

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Setting up the Lagrange Method

Remarks (Personal Tricks):

1. Otherwise defined, ensure that $sign(\lambda) \equiv sign(\alpha)$, where α is a constant.

2. Preferably; for maximization problems let $sign(\lambda) \equiv sign(\alpha) > 0$ and $sign(\lambda) \equiv sign(\alpha) < 0$ for minimization problems.

3. Equivalent scenarios; let g(x) = -f(x) then $\max_x f(x)$ is same as $\min_x g(x)$ and vice versa.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Examples

- For a maximization problem; $\mathscr{L}_{max} = f(\mathbf{x}) + \lambda(I \mathbf{px})$. Equivalently, $\mathscr{L}_{min} = -(\mathscr{L}_{max}) = -f(\mathbf{x}) - \lambda(I - \mathbf{px})$ or $\mathscr{L}_{min} = -(\mathscr{L}_{max}) = -f(\mathbf{x}) + \lambda(\mathbf{px} - I)$
- For a minimization problem; $\mathscr{L}_{min} = wl + rk \lambda(f(k, l) Q)$. Equivalently, $\mathscr{L}_{max} = -(\mathscr{L}_{min}) = -wl - rk + \lambda(f(k, l) - Q)$ or $\mathscr{L}_{max} = -(\mathscr{L}_{min}) = -wl - rk - \lambda(Q - f(k, l))$

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Examples

Show the FONC and SOSC of the following optimization problems:

subject to $p_1c_1 + p_2c_2 = I$.

 $(x_1^*, x_2^*) \epsilon \operatorname*{arg\,min}_{x_1 \ge 0, x_2 \ge 0} w_1 x_1 + w_2 x_2$

 $(c_1^*, c_2^*) \epsilon \underset{c_1 > 0, c_2 > 0}{\arg \max} U(c_1, c_2)$

subject to $f(x_1, x_2) = y$