Introduction to Mathematical Economics Review on Linear Algebra (Matrices and Determinants)

TA Session

David Ihekereleome Okorie

October 22nd, 2018.

Addition, subtraction of matrices:

$$
\begin{aligned}
&\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & a_{i j} & \vdots \\
a_{k 1} & \ldots & a_{k n}
\end{array}\right) \pm\left(\begin{array}{ccc}
b_{11} & \ldots & b_{1 n} \\
\vdots & b_{i j} & \vdots \\
b_{k 1} & \ldots & b_{k n}
\end{array}\right) \\
&=\left(\begin{array}{ccc}
a_{11} \pm b_{11} & \ldots & a_{1 n} \pm b_{1 n} \\
\vdots & a_{i j} \pm b_{i j} & \vdots \\
a_{k 1} \pm b_{k 1} & \ldots & a_{k n} \pm b_{k n}
\end{array}\right)
\end{aligned}
$$

Scalar Multiplication:

$$
r\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & a_{i j} & \vdots \\
a_{k 1} & \ldots & a_{k n}
\end{array}\right)=\left(\begin{array}{ccc}
r a_{11} & \ldots & r a_{1 n} \\
\vdots & r a_{i j} & \vdots \\
r a_{k 1} & \ldots & r a_{k n}
\end{array}\right)
$$

Matrix Algebra: Matrix Multiplication

Matrix Multiplication:

- The matrix product $A B$ is well defined if and only if:
number of columns of $A=$ number of rows of B
- Let A be a $k \times m$ matrix and B a $m \times n$ matrix. Then $A B$ is a $k \times n$ matrix and its (i, j) th entry is

$$
\left(\begin{array}{lll}
a_{i 1} & \cdots & a_{i m}
\end{array}\right) \cdot\left(\begin{array}{c}
b_{1 j} \\
\vdots \\
b_{m j}
\end{array}\right)=a_{i 1} b_{1 j}+\cdots+a_{i m} b_{m j}
$$

Matrix Algebra: Laws of Matrix Algebra

Laws of Matrix Algebra:

- Associative Laws: $(A+B)+C=A+(B+C)$; $(A B) C=A(B C)$.
- Commutative Law for Addition: $A+B=B+A$, but generally $\mathbf{A B} \neq \mathbf{B A}$.
- Distributive Laws:
$(A+B) C=A C+B C ; A(B+C)=A B+A C$.

Matrix Algebra: Transpose

Transpose

- The transpose of a $k \times n$ matrix $A: A^{\top}$. It is a $n \times k$ matrix obtained by interchanging the rows and columns of A.
- $(A \pm B)^{\top}=A^{\top} \pm B^{\top}$;
- $\left(A^{\top}\right)^{\top}=A$;
- $(r A)^{\top}=r A^{\top}$;
- $(A B)^{\top}=B^{\top} A^{\top}$.

Theorem 8.1

$$
(A B)^{\top}=B^{\top} A^{\top}
$$

Special Kinds of Matrices

Special matrices

- square matrix; column matrix; row matrix;
- diagonal matrix; upper-triangular matrix; lower-triangular matrix
- symmetric matrix; idempotent matrix; permutation matrix; nonsingular matrix.

Systems of Equations in Matrix Form

$$
\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & a_{i j} & \vdots \\
a_{k 1} & \cdots & a_{k n}
\end{array}\right) \cdot\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{k}
\end{array}\right) \Longrightarrow A \mathbf{x}=\mathbf{b}
$$

Inverse of Square Matrix

Definition:

- Let A be an $n \times n$ matrix. The $n \times n$ matrix B is an inverse for A if $A B=B A=I$.
- Let A be an $k \times n$ matrix. The $n \times k$ matrix B is a right inverse for A if $A B=I$.
- Let A be an $k \times n$ matrix. The $n \times k$ matrix c is a left inverse for A if $C A=l$.

Inverse of Square Matrix

Theorem 8.5

An $n \times n$ matrix A can have at most one inverse.

Theorem 8.6

If an $n \times n$ matrix A is invertible, then it is nonsingular, and the unique solution to the system of linear equations $A \mathbf{x}=\mathbf{b}$ is

$$
\mathbf{x}=A^{-1} \mathbf{b}
$$

Theorem 8.7

If an $n \times n$ matrix A is non-singular, then it is invertible.

- Example 8.3 and 8.4
- Exercise 8.19 and 8.28

Inverse of Square Matrix

Theorem 8.9

For any square matrix A, the following statements are equivalent:

- (a) A is invertible.
- (b) A has a right inverse.
- (c) A has a left inverse.
- (b) Every system $A \mathbf{x}=\mathbf{b}$ has at least one solution for every b.
- (e) Every system $A \mathbf{x}=\mathbf{b}$ has at most one solution for every b.
- (f) A is nonsingular.
- (g) A has a maximal rank n.

Inverse of Square Matrix

Theorem 8.10
Let A and B are square invertible matrices. Then,

- (a) $\left(A^{-1}\right)^{-1}=A$.
- (b) $\left(A^{\top}\right)^{-1}=\left(A^{-1}\right)^{\top}$.
- (c) $A B$ is invertible, and $(A B)^{-1}=B^{-1} A^{-1}$.

Inverse of Square Matrix

Theorem 8.11

If A is invertible:

- (a) A^{m} is invertible for any integer m and

$$
\left(A^{m}\right)^{-1}=\left(A^{-1}\right)^{m}=A^{-m}
$$

- (b) for any integers r and s,

$$
A^{r} A^{s}=A^{r+s}
$$

- (c) for any scaler $r \neq 0, r A$ is invertible and

$$
(r A)^{-1}=\frac{1}{r} A^{-1}
$$

Determinant

Defining the Determinant

- Let A be an $n \times n$ matrix. Let $A_{i j}$ be an $(n-1) \times(n-1)$ submatrix obtained by deleting i-th row and j-th column from A. Then,
- the scalar $M_{i j} \equiv \operatorname{det} A_{i j}$ is called the (i, j) th minor of A,
- the scaler $C_{i j} \equiv(-1)^{i+j} \operatorname{det} A_{i j}$ is called the (i, j) th cofactor of A.
- The determinant of an $n \times n$ matrix A is given by

$$
\operatorname{det} A=a_{11} C_{11}+a_{12} C_{12}+\cdots+a_{1 n} C_{1 n} .
$$

Computing the Determinant

Theorem 9.3

A square matrix is nonsingular if and only if its determinant is nonzero.

Uses of the Determinant

- The $n \times n$ matrix whose (i, j) th entry is $C_{j i}$, the (i, j) th cofactor of A, is called the adjoint of A and is written adj A.

Theorem 9.4

Let A be a nonsingular matrix. Then,

- (a) $A^{-1}=\frac{1}{\operatorname{det} A} \cdot \operatorname{adj} A$, and
- (b) (Cramer's rule) the unique solution $\mathbf{x}=\left(x_{1}, \cdots, x_{n}\right)$ of the $n \times n$ system $A \mathbf{x}=\mathbf{b}$ is

$$
x_{i}=\frac{\operatorname{det} B_{i}}{\operatorname{det} A}, \quad \text { for } i=1, \cdots, n,
$$

where B_{i} is the matrix A with the RHS \mathbf{b} replacing the i-th column of A.

- Example 9.3 and 9.4.

Uses of the Determinant

Theorem 9.5

Let A be a square matrix. Then,

- (a) $\operatorname{det} A^{\top}=\operatorname{det} A$,
- (b) $\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B)$, and
- $\operatorname{det}(A+B) \neq \operatorname{det} A+\operatorname{det} B$, in general.
- IS-LM analysis via Cramer's rule.
- Exercise 9.11.

Leading Principal Minor

A square matrix, $\{A\}_{i j}$ has n leading principal minors. Where $n=i=j$
Given that

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

The leading principal minors are:

$$
D_{1}=\left[a_{11}\right], D_{2}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \text { and } D_{3}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

Arbitrary Principal Minor

A square matrix, $\{A\}_{i j}$ has k-order arbitrary principal minors. Where $k=1,2, \ldots, n$ and $n=i=j$. This is derived from cancelling different and unique equal $(n-k)$ number of rows and columns. Using the already defined $\{A\}_{i j}$.

The arbitrary principal minors are:

$$
\begin{gathered}
\Delta_{1}^{1}=\left[a_{11}\right], \Delta_{1}^{2}=\left[a_{22}\right], \text { and } \Delta_{1}^{1}=\left[a_{33}\right] \\
\Delta_{2}^{1}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right], \Delta_{2}^{2}=\left[\begin{array}{ll}
a_{11} & a_{13} \\
a_{31} & a_{33}
\end{array}\right], \text { and } \Delta_{2}^{3}=\left[\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right]
\end{gathered}
$$

and

$$
\Delta_{3}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

