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Matrix Algebra: Addition and subtraction

Addition, subtraction of matrices:

ain £ bi

a1 £ b

Hao
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Matrix Algebra: Scalar Multiplication

Scalar Multiplication:
di1 ...

din raii .. laip
rf: a < |=1| : ra;
a1l --- dkn ragi

rakn
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Matrix Algebra: Matrix Multiplication

Matrix Multiplication:

» The matrix product AB is well defined if and only if:
number of columns of A = number of rows of B

> Let A be a k X m matrix and B a m x n matrix. Then
AB is a k x n matrix and its (/,j)th entry is

bij
(a,']_ R a,-m) 0 = ailblj qoco aimbmj
(S
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Matrix Algebra: Laws of Matrix Algebra

Laws of Matrix Algebra:

» Associative Laws: (A+ B)+ C = A+ (B+ C);
(AB)C = A(BC).

» Commutative Law for Addition: A+ B =B + A, but
generally AB#£BA.

» Distributive Laws:
(A+B)C=AC+ BC;, A(B+ C)=AB+ AC.
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Matrix Algebra: Transpose

» The transpose of a k x n matrix A: A" ltisanx k
of A.

matrix obtained by interchanging the rows and columns
» (A£B)" = AT £ BT;
- (AN =A

» (rA)T =rAT;

» (AB)T =BTAT.

Theorem 8.1
(AB)T =BTAT

D¢
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Special Kinds of Matrices

Special matrices

» square matrix; column matrix; row matrix;

» diagonal matrix; upper-triangular matrix; lower-triangular
matrix

» symmetric matrix; idempotent matrix; permutation
matrix; nonsingular matrix.

Systems of Equations in Matrix Form
a1 ... din X1 bl

— Ax=Db

ajj
al ... an Xp by




Inverse of Square Matrix

» Let A be an n x n matrix. The n X n matrix B is an
inverse for A if AB = BA = 1.

» Let A be an k X n matrix. The n X k matrix B is a right
inverse for A if AB = 1.

» Let A be an k x n matrix. The n X k matrix c is a left
inverse for A if CA= 1.
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Inverse of Square Matrix

Theorem 8.5
An n X n matrix A can have at most one inverse.
Theorem 8.6

If an n x n matrix A is invertible, then it is nonsingular, and
the unique solution to the system of linear equations Ax = b is

x=A"1b
Theorem 8.7

» Example 8.3 and 8.4

If an n X n matrix A is non-singular, then it is invertible
» Exercise 8.19 and 8.28

D¢
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Inverse of Square Matrix

Theorem 8.9

For any square matrix A, the following statements are
equivalent:

» (a) Ais invertible.

» (b) A has a right inverse.

» (c) A has a left inverse.
» (b) Every system Ax = b has at least one solution for
every b.

v

(e) Every system Ax = b has at most one solution for
every b.

v

(f) A'is nonsingular.

v

(g) A has a maximal rank n.
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Inverse of Square Matrix

Theorem 8.10
Let A and B are square invertible matrices. Then,
- (a) (A=A

> (b) (A) = (A"

» (c) AB is invertible, and (AB)™! = B71A7L.

D¢
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Inverse of Square Matrix

Theorem 8.11
If A'is invertible:
» (a) A™ is invertible for any integer m and

(Am)—l _ (A—l)m — A
» (b) for any integers r and s,

ArAs — Ar+s

» (c) for any scaler r # 0, rA is invertible and

(rA)~!

= lA—l
.
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Determinant

Defining the Determinant

» Let A be an n x n matrix. Let A;j be an (n—1) x (n—1)
submatrix obtained by deleting i-th row and j-th column
from A. Then,

> the scalar Mj; = detAj; is called the (i, )th minor of A,
> the scaler C;j = (—1)"*detAj; is called the (i,j)th
cofactor of A.

» The determinant of an n X n matrix A is given by

detA = a11 Gy + a12Cio + - - - + a1, Gip.
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Theorem 9.3

nonzero.

A square matrix is nonsingular if and only if its determinant is

DA
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Uses of the Determinant

» The n x n matrix whose (7, j)th entry is Cj;, the (i,/)th
cofactor of A, is called the adjoint of A and is written
adj A.

Theorem 9.4

Let A be a nonsingular matrix. Then,

> (a) A7t = 415 - adjA, and

» (b) (Cramer’s rule) the unique solution x = (xi,- -, x,) of
the n x n system Ax =b is

detB;

X,':m, fori=1,--~,n,

where B; is the matrix A with the RHS b replacing the i-th
column of A.

» Example 9.3 and 9.4.
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Uses of the Determinant

Theorem 9.5

Let A be a square matrix. Then,

> (a) detAT = detA,
(b) det(AB) = (detA)(detB), and
det(A + B) # detA + detB, in general.

v

v

v

IS-LM analysis via Cramer's rule.

v

Exercise 9.11.
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Leading Principal Minor

A square matrix, {A};; has n leading principal minors. Where n =i = j

Given that
ai; a2 aig
A= |aa1 az a3
az| as as3

The leading principal minors are:

4 ag ail aiz @13

Dy = [a11] , D2 = and D3 = |a21 a2 asgs
azr a2

asy agz ass
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L —
Arbitrary Principal Minor

A square matrix, {A};; has k — order arbitrary principal minors. Where
k=1,2,...,nand n = ¢ = j. This is derived from cancelling different
and unique equal (n — k) number of rows and columns. Using the already
defined {A};;.

The arbitrary principal minors are:

A% = [an] ,A% = [agg] ,andA% = [agg]

a a a a a a
A% _ 911 a12 ,A2 _ |61 a13 .and A3 — |22 @23
az1 a2 asir ass az2 ass

and
a1 a2 ai3
Az = [a21 a2 a3
az1 aszy as3
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